Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Bioorg Chem ; 147: 107377, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653150

RESUMO

The first systematic acylated diversification of naturally scarce premyrsinane diterpenes, together with their biosynthetic precursors lathyrane diterpene were carried out. Two new series of premyrsinane derivates (1a-32a) and lathyrane derivates (1-32) were synthesized from the naturally abundant lathyrane diterpene Euphorbia factor L3 through a bioinspired approach. The cholinesterase inhibitory and neuroprotective activities of these diterpenes were investigated to explore potential anti-Alzheimer's disease (AD) bioactive lead compounds. In general, the lathyrane diterpenes showed the better acetylcholinesterase (AChE) inhibitory activity than that of premyrsinanes. The lathyrane derivative 17 bearing a 3-dimethylaminobenzoyl moiety showed the best AChE inhibition effect with the IC50 value of 7.1 µM. Molecular docking demonstrated that 17 could bond with AChE well (-8 kal/mol). On the other hand, premyrsinanes showed a better neuroprotection profile against H2O2-induced injury in SH-SY5Y cells. Among them, the premyrsinane diterpene 16a had significant neuroprotective effect with the cell viability rate of 113.5 % at 12.5 µM (the model group with 51.2 %). The immunofluorescence, western blot and reactive oxygen species (ROS) analysis were conducted to demonstrate the mechanism of 16a. Furthermore, a preliminary SAR analysis of the two categories of diterpenes was performed to provide the insights for anti-AD drug development.

2.
Discov Med ; 36(182): 494-508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531790

RESUMO

BACKGROUND: Mandibular distraction osteogenesis (MDO) is a highly effective method for bone regeneration, commonly employed in treating craniofacial defects and deformities. Osteocytes sense mechanical forces in the pericellular space, relay external stimuli to biochemical changes, and send signals to other effector cells, including bone marrow mesenchymal stem cells (BM-MSCs), to regulate bone resorption and formation. Piezo1 potentially affects the secretion signal molecules of bone cells under mechanical stretch. The primary aim of this study was to enhance our comprehension of the molecular biology underlying this therapeutic approach and to identify specific signaling molecules that facilitate bone formation in response to stretch forces. METHODS: Mechanical stretching was applied to negative controls and Piezo1 knockdown osteocyte-like MLO-Y4 cells. Alkaline phosphatase and Alizarin Red S staining were used to survey the osteogenic potential of BM-MSCs. The production and secretion content of adenosine triphosphate (ATP) was measured using ATP content determination analysis. Pathway-related and osteo-specific genes and proteins were evaluated using real-time polymerase chain reaction (RT-PCR), Western blots, and immunofluorescence. Mitochondrial organization was examined with a transmission electron microscope. RESULTS: The conditioned medium of stretch-exposed MLO-Y4s significantly upregulated osteogenesis-related indicators of BM-MSCs (p < 0.001). The upregulation of BM-MSC osteogenesis was associated with ATP release from osteocytes. Mechanically induced calcium transfer and transcriptional coactivator with PDZ-binding motif (TAZ) nuclear translocation mediated by Piezo1 could promote mitochondrial fission and ATP release. Osteocytes detected stretch forces through Piezo1, triggering calcium influx, TAZ nuclear translocation, and ATP production. CONCLUSIONS: The stretch stimulation of Piezo1 induces calcium influx, which in turn promotes calcium-related TAZ nuclear translocation, changes in mitochondrial dynamics, and the release of ATP in osteocytes. This signaling cascade leads to an up-regulation in the osteogenic capacity of BM-MSCs. Mitochondrial energy metabolism of mechanosensitive protein Piezo1-dependent and ATP release may provide a new effective intervention method for mechanically related bone remodeling.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Osteogênese/fisiologia , Osteócitos/metabolismo , Cálcio/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular/fisiologia , Células da Medula Óssea/metabolismo
3.
J Nucl Med ; 65(4): 520-526, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485270

RESUMO

Radiation pneumonitis (RP) that develops early (i.e., within 3 mo) (RPEarly) after completion of concurrent chemoradiation (cCRT) leads to treatment discontinuation and poorer survival for patients with stage III non-small cell lung cancer. Since no RPEarly risk model exists, we explored whether published RP models and pretreatment 18F-FDG PET/CT-derived features predict RPEarly Methods: One hundred sixty patients with stage III non-small cell lung cancer treated with cCRT and consolidative immunotherapy were analyzed for RPEarly Three published RP models that included the mean lung dose (MLD) and patient characteristics were examined. Pretreatment 18F-FDG PET/CT normal-lung SUV featured included the following: 10th percentile of SUV (SUVP10), 90th percentile of SUV (SUVP90), SUVmax, SUVmean, minimum SUV, and SD. Associations between models/features and RPEarly were assessed using area under the receiver-operating characteristic curve (AUC), P values, and the Hosmer-Lemeshow test (pHL). The cohort was randomly split, with similar RPEarly rates, into a 70%/30% derivation/internal validation subset. Results: Twenty (13%) patients developed RPEarly Predictors for RPEarly were MLD alone (AUC, 0.72; P = 0.02; pHL, 0.87), SUVP10, SUVP90, and SUVmean (AUC, 0.70-0.74; P = 0.003-0.006; pHL, 0.67-0.70). The combined MLD and SUVP90 model generalized in the validation subset and was deemed the final RPEarly model (RPEarly risk = 1/[1+e(- x )]; x = -6.08 + [0.17 × MLD] + [1.63 × SUVP90]). The final model refitted in the 160 patients indicated improvement over the published MLD-alone model (AUC, 0.77 vs. 0.72; P = 0.0001 vs. 0.02; pHL, 0.65 vs. 0.87). Conclusion: Patients at risk for RPEarly can be detected with high certainty by combining the normal lung's MLD and pretreatment 18F-FDG PET/CT SUVP90 This refined model can be used to identify patients at an elevated risk for premature immunotherapy discontinuation due to RPEarly and could allow for interventions to improve treatment outcomes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pneumonite por Radiação , Humanos , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Pneumonite por Radiação/diagnóstico por imagem , Pneumonite por Radiação/etiologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18/uso terapêutico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Pulmão , Imunoterapia , Estudos Retrospectivos
4.
Sci Adv ; 10(10): eadl0026, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457511

RESUMO

Achieving regioselective synthesis in complex molecules with multiple reactive sites remains a tremendous challenge in synthetic chemistry. Regiodivergent palladium-catalyzed C─H arylation of complex antitumor drug osimertinib with various aryl bromides via the late-stage functionalization strategy was demonstrated here. This reaction displayed a switch in regioselectivity under complete base control. Potassium carbonate (K2CO3) promoted the arylation of acrylamide terminal C(sp2)-H, affording 34 derivatives. Conversely, sodium tert-butoxide (t-BuONa) mediated the aryl C(sp2)-H arylation of the indole C2 position, providing 27 derivatives. The derivative 3r containing a 3-fluorophenyl group at the indole C2 position demonstrated similar inhibition of EGFRT790M/L858R and superior antiproliferative activity in H1975 cells compared to osimertinib, as well as similar antiproliferative activity in A549 cells and antitumor efficacy in xenograft mouse model bearing H1975 cells. This approach provides a "one substrate-multi reactions-multiple products" strategy for the structural modification of complex drug molecules, creating more opportunities for the fast screening of pharmaceutical molecules.


Assuntos
Acrilamidas , Compostos de Anilina , Neoplasias Pulmonares , Paládio , Pirimidinas , Humanos , Animais , Camundongos , Paládio/química , Receptores ErbB , Mutação , Inibidores de Proteínas Quinases , Indóis/química , Catálise
5.
Mikrochim Acta ; 191(1): 19, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38087094

RESUMO

Silver nanocubes monolayer-modified polydimethylsiloxane (Ag NC/PDMS) flexible SERS substrates have been prepared by a three-phase interface self-assembly procedure. The combination of this method with membrane technology brings nanoparticles in close proximity, densely, and regularly arranged in monolayers over a large area, leading to excellent SERS properties. Considering the complexity of practical detection, molecular imprinted polymers (MIPs) were anchored on the surface of SERS substrate and applied to selective detection of microcystin-LR (MC-LR). It is worth mentioning that the SERS imprinted membranes (AP-MIMs) were still clearly detected at a concentration of 0.1 µg·L-1 of MC-LR in drinking water, and the detection limit was as low as 0.0067 µg·L-1. The substrate exhibited excellent uniformity with a relative standard deviation (RSD) of 6.1%. In the presence of interference molecules, AP-MIMs exhibited excellent selectivity for MC-LR. Furthermore, in the spiking and recovery tests of practical lake water samples, the method showed excellent recoveries ranging from 96.47 to 105.31%. It has been demonstrated that the prepared AP-MIMs can be applied to sensitive and specific detection of trace amounts of MC-LR in drinking water.


Assuntos
Água Potável , Nanopartículas Metálicas , Água Doce , Microcistinas , Nanopartículas Metálicas/química
6.
Acta Neurochir (Wien) ; 165(12): 3895-3903, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922000

RESUMO

BACKGROUND: Gamma Knife Radiosurgery (GKRS) is an effective treatment option for medically refractory trigeminal neuralgia (TN). This study examines GKRS outcome in a large cohort of TN patients and highlights pretreatment factors associated with pain relief. METHODS: This is a single-center retrospective analysis of patients treated with GKRS for TN between 2011 and 2019. Pain relief was assessed at 1 year, and 2-3 years following GKRS. Multivariable analysis identified several factors that predicted pain relief. These predicting factors were applied to establish a pain relief scoring system. RESULTS: A total of 162 patients met inclusion criteria. At 1 year post-GKRS, the breakdown of Barrow Neurological Institute (BNI) score for pain relief was as follows: 77 (48%) score of I, 13 (8%) score of II, 37 (23%) score of III, 22 (14%) score of IV, and 13 (8%) score of V. Factors that were significantly associated with pain-free outcome at 1 year were: Typical form of TN (OR = 2.2 [1.1, 4.9], p = 0.049), No previous microvascular decompression (OR = 4.4 [1.6, 12.5], p = 0.005), Response to medical therapy (OR = 2.7 [1.1, 6.1], p = 0.018), and Seniority > 60 years (OR = 2.8 [1.4, 5.5], p = 0.003). The term "Trigeminal Neuralgia-RadioSurgery" was used to create the TN-RS acronym representing the significant factors. A stepwise increase in the median predicted probability of pain-free outcome at 1 year from 3% for patients with a score of 0 to 69% for patients with a maximum score of 4. CONCLUSION: The TN-RS scoring system can assist clinicians in identifying patients that may benefit from GNRS for TN by predicting 1-year pain-free outcomes.


Assuntos
Radiocirurgia , Neuralgia do Trigêmeo , Humanos , Neuralgia do Trigêmeo/radioterapia , Neuralgia do Trigêmeo/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Dor/cirurgia , Seguimentos
7.
J Cancer ; 14(15): 2889-2894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781077

RESUMO

Background: Intravesical prostatic protrusion (IPP) is common in prostate-related diseases, whose clinical significance in radical prostatectomy was unknown. Methods: 791 patients underwent robot-assisted or open radical prostatectomy at our institution were enrolled. The transabdominal ultrasound examination of prostate and IPP was carried out preoperatively, by which IPP was classified as no (0-0.5cm, grade 0), slight (0.6-1.0cm, grade 1) and noticeable (>1.0cm, grade 2). Results: 185 (23.4%), 170 (21.5%) and 436 (55.1%) patients had no, slight and noticeable IPP, respectively. Generally, prostate specific antigen (PSA), Gleason score and pT stage increased with IPP grade. In particular, cases with grade 0 IPP had a decreased proportion of seminal vesicles' involvement than those with grade 1 and grade 2 IPP (p=0.035). Reconstruction of the bladder neck (in robot-assisted group), increased surgical bleeding (>200ml), and prolonged postoperative hospital stays (>14 days) happened more in patients with grade 2 IPP. Blood transfusion only happened in patients with noticeable IPP. PSM of bladder neck was only associated with higher IPP grade in open surgery group (p=0.032), not in robot-assisted surgery group. Conclusion: IPP is associated with cancer aggressiveness, surgery difficulty and PSM of bladder neck in prostate cancer. Assessment of it provides more information for operations.

8.
Zool Res ; 44(5): 905-918, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37575045

RESUMO

Previous studies have shown that Vibrio splendidus infection causes mitochondrial damage in Apostichopus japonicus coelomocytes, leading to the production of excessive reactive oxygen species (ROS) and irreversible apoptotic cell death. Emerging evidence suggests that mitochondrial autophagy (mitophagy) is the most effective method for eliminating damaged mitochondria and ROS, with choline dehydrogenase (CHDH) identified as a novel mitophagy receptor that can recognize non-ubiquitin damage signals and microtubule-associated protein 1 light chain 3 (LC3) in vertebrates. However, the functional role of CHDH in invertebrates is largely unknown. In this study, we observed a significant increase in the mRNA and protein expression levels of A. japonicus CHDH (AjCHDH) in response to V. splendidus infection and lipopolysaccharide (LPS) challenge, consistent with changes in mitophagy under the same conditions. Notably, AjCHDH was localized to the mitochondria rather than the cytosol following V. splendidus infection. Moreover, AjCHDH knockdown using siRNA transfection significantly reduced mitophagy levels, as observed through transmission electron microscopy and confocal microscopy. Further investigation into the molecular mechanisms underlying CHDH-regulated mitophagy showed that AjCHDH lacked an LC3-interacting region (LIR) for direct binding to LC3 but possessed a FB1 structural domain that binds to SQSTM1. The interaction between AjCHDH and SQSTM1 was further confirmed by immunoprecipitation analysis. Furthermore, laser confocal microscopy indicated that SQSTM1 and LC3 were recruited by AjCHDH in coelomocytes and HEK293T cells. In contrast, AjCHDH interference hindered SQSTM1 and LC3 recruitment to the mitochondria, a critical step in damaged mitochondrial degradation. Thus, AjCHDH interference led to a significant increase in both mitochondrial and intracellular ROS, followed by increased apoptosis and decreased coelomocyte survival. Collectively, these findings indicate that AjCHDH-mediated mitophagy plays a crucial role in coelomocyte survival in A. japonicus following V. splendidus infection.


Assuntos
Stichopus , Vibrioses , Animais , Colina Desidrogenase/metabolismo , Células HEK293 , Mitofagia/genética , Espécies Reativas de Oxigênio/metabolismo , Proteína Sequestossoma-1/metabolismo , Stichopus/metabolismo , Vibrioses/veterinária
9.
Am J Orthod Dentofacial Orthop ; 163(4): 509-519, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37079283

RESUMO

INTRODUCTION: This retrospective clinical study investigated the clinical changes of maxillary central incisor and alveolar bone in Class II Division 2 nonextraction treatment with fixed appliances or clear aligners on the basis of cone-beam computed tomography. METHODS: Fifty-nine Chinese Han patients with similar demographic characteristics were collected from a conventional bracket group, a self-ligating bracket group, and a clear aligner group. All measurements about root resorption and alveolar bone thickness on the cone-beam computed tomography images were tested. Changes between pretreatment and posttreatment were evaluated by paired-sample t test. The variation among the 3 groups was compared by 1-way analysis of variance. RESULTS: The resistance center of the maxillary central incisor showed upward or forward movement, and the axial inclination was increased in 3 groups (P <0.0001). Root volume loss in the clear aligner group (23.68 ± 4.82 mm3) was significantly less than that in the fixed appliances group (28.24 ± 6.44 mm3 in the conventional bracket group, 28.17 ± 6.07 mm3 in the self-ligating bracket group) (P <0.05). All 3 groups showed a significant decrease in palatal alveolar bone and total bone thickness at all 3 levels at posttreatment. In contrast, labial bone thickness significantly increased except for crestal level l. Among the 3 groups, the clear aligner group had a prominent increase in labial bone thickness at the apical level (P = 0.0235). CONCLUSIONS: Clear aligner treatment for Class II Division 2 malocclusions could effectively reduce the incidence of fenestration and root resorption. Our findings will be beneficial to comprehensively understand the effectiveness of different appliances for Class II Division 2 malocclusions treatment.


Assuntos
Má Oclusão Classe II de Angle , Aparelhos Ortodônticos Removíveis , Reabsorção da Raiz , Humanos , Incisivo/diagnóstico por imagem , Estudos Retrospectivos , Má Oclusão Classe II de Angle/diagnóstico por imagem , Má Oclusão Classe II de Angle/terapia , Aparelhos Ortodônticos Fixos , Tomografia Computadorizada de Feixe Cônico , Maxila/diagnóstico por imagem
10.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902384

RESUMO

Bone loss occurs in astronauts during long-term space flight, but the mechanisms are still unclear. We previously showed that advanced glycation end products (AGEs) were involved in microgravity-induced osteoporosis. Here, we investigated the improvement effects of blocking AGEs formation on microgravity-induced bone loss by using the AGEs formation inhibitor, irbesartan. To achieve this objective, we used a tail-suspended (TS) rat model to simulate microgravity and treated the TS rats with 50 mg/kg/day irbesartan, as well as the fluorochrome biomarkers injected into rats to label dynamic bone formation. To assess the accumulation of AGEs, pentosidine (PEN), non-enzymatic cross-links (NE-xLR), and fluorescent AGEs (fAGEs) were identified in the bone; 8-hydroxydeoxyguanosine (8-OHdG) was analyzed for the reactive oxygen species (ROS) level in the bone. Meanwhile, bone mechanical properties, bone microstructure, and dynamic bone histomorphometry were tested for bone quality assessment, and Osterix and TRAP were immunofluorescences stained for the activities of osteoblastic and osteoclastic cells. Results showed AGEs increased significantly and 8-OHdG expression in bone showed an upward trend in TS rat hindlimbs. The bone quality (bone microstructure and mechanical properties) and bone formation process (dynamic bone formation and osteoblastic cells activities) were inhibited after tail-suspension, and showed a correlation with AGEs, suggesting the elevated AGEs contributed to the disused bone loss. After being treated with irbesartan, the increased AGEs and 8-OHdG expression were significantly inhibited, suggesting irbesartan may reduce ROS to inhibit dicarbonyl compounds, thus suppressing AGEs production after tail-suspension. The inhibition of AGEs can partially alter the bone remodeling process and improve bone quality. Both AGEs accumulation and bone alterations almost occurred in trabecular bone but not in cortical bone, suggesting AGEs effects on bone remodeling under microgravity are dependent on the biological milieu.


Assuntos
Produtos Finais de Glicação Avançada , Osteoporose , Ratos , Animais , Irbesartana , Produtos Finais de Glicação Avançada/metabolismo , Espécies Reativas de Oxigênio , Osso e Ossos/metabolismo
11.
Cell Prolif ; 56(9): e13440, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36880296

RESUMO

Macrophages are multifunctional immune system cells that are essential for the mechanical stimulation-induced control of metabolism. Piezo1 is a non-selective calcium channel expressed in multifarious tissues to convey mechanical signals. Here, a cellular model of tension was used to study the effect of mechanical stretch on the phenotypic transformation of macrophages and its mechanism. An indirect co-culture system was used to explore the effect of macrophage activation on bone marrow mesenchymal stem cells (BMSCs), and a treadmill running model was used to validate the mechanism in vivo for in vitro studies. p53 was acetylated and deacetylated by macrophages as a result of mechanical strain being detected by Piezo1. This process is able to polarize macrophages towards M2 and secretes transforming growth factor-beta (TGF-ß1), which subsequently stimulates BMSCs migration, proliferation and osteogenic differentiation. Knockdown of Piezo1 inhibits the conversion of macrophages to the reparative phenotype, thereby affecting bone remodelling. Blockade of TGF-ß I, II receptors and Piezo1 significantly reduced exercise-increased bone mass in mice. In conclusion, we showed that mechanical tension causes calcium influx, p53 deacetylation, macrophage polarization towards M2 and TGF-ß1 release through Piezo1. These events support BMSC osteogenesis.


Assuntos
Osteogênese , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Mecanotransdução Celular , Proteína Supressora de Tumor p53/metabolismo , Macrófagos/metabolismo , Diferenciação Celular , Canais Iônicos
12.
J Med Chem ; 66(3): 1742-1760, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36662031

RESUMO

Most patients with senile osteoporosis (SOP) are severely deficient in bone mass, and treatments using bone resorption inhibitors, such as bisphosphonates, have shown limited efficacy. Small-molecule osteogenesis-promoting drugs are required to improve the treatment for this disease. Previously, we demonstrated that a compound with a benzofuran-like structure promoted bone formation by upregulating BMP-2, and it exhibited a therapeutic effect in SAMP-6 mice, glucocorticoid-induced osteoporosis rats, and ovariectomized rats. In this study, aged C57 and SAMP-6 mice models were used to investigate the therapeutic and preventive effects of compound 125 on SOP. scRNA-seq analysis showed that BMP-2 upregulation is the mechanism through which 125 accelerates bone turnover and increases the proportion of osteoblasts. We evaluated the structure-activity relationship of the candidate drugs and found that the derivative I-9 showed significantly higher efficacy than 125 and teriparatide in the zebrafish osteoporosis model. This study provides a foundation for the development of SOP drugs.


Assuntos
Benzofuranos , Osteoporose , Ratos , Camundongos , Animais , Peixe-Zebra , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Osteogênese , Osteoblastos , Benzofuranos/farmacologia , Benzofuranos/uso terapêutico , Benzofuranos/química , Relação Estrutura-Atividade
13.
Comput Methods Biomech Biomed Engin ; 26(3): 249-260, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35363098

RESUMO

Osteocytes play an important role in mechanosensation and conduction in bone tissue, and the change of mechanical environment can affect the sensitivity of osteocytes to external stimulation. The structure of osteocytes will be changed when they are subjected to vibrations, which influence the mechanosensitivity of osteocytes and alter the regulation of bone remodeling process. As an important mechanotransduction structure in osteocytes, the membrane skeleton greatly affects the mechanosensation and conduction of osteocytes. However, the dynamic responses of membrane skeleton to the vibration and the structural changes of membrane skeleton are unclear. Therefore, we applied a nonlinear dynamics method to explain the time-dependent changes of membrane skeleton. The semi-ellipsoidal reticulate shell structure of membrane skeleton is built based on the experimental observation in our previous work. Then, the nonlinear dynamic equations of membrane skeleton are established according to the theory of plate and shell dynamics, and the displacement-time curves, phase portraits, and Poincaré maps of membrane skeleton structure were obtained. The numeration results show that under the vibration stimulation of 15 Hz, 30 Hz, 60 Hz, and 90 Hz, the membrane skeleton is destroyed after a transient equilibrium position vibration. The vibration of 15 Hz has the most destructive effect on the membrane skeleton, the natural frequency of membrane skeleton may be less than 15 Hz. In addition, the chaos phenomenon occurs to the membrane skeleton during vibration. As a damping factor, the existence of viscosity alleviates the damage of structure. This study can help us to understand the oscillation characteristic of membrane skeleton in osteocyte.


Assuntos
Mecanotransdução Celular , Osteócitos , Mecanotransdução Celular/fisiologia , Osteócitos/fisiologia , Dinâmica não Linear , Osso e Ossos , Vibração
14.
Free Radic Biol Med ; 195: 132-144, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584797

RESUMO

Tubulointerstitial fibrosis (TIF) is essential during the development of end-stage kidney disease (ESKD) and is associated with the impairment of fatty acid oxidation (FAO). Kruppel-like factor 14 (KLF14) is an important gene in lipid metabolism, but its role in TIF remains unknown. TGF-ß-stimulated HK-2 cells and mouse unilateral ureteral obstruction (UUO) were used as renal fibrosis models. The role of KLF14 in the process of renal fibrosis was verified by gene knockout mice, genetic or pharmacological interference in animal model and cell model respectively. In the current study, we found that KLF14 expression increased after activation of the TGF-ß signaling pathway during TIF. In KLF14-/- mice, more severe fibrosis was observed after unilateral ureteral obstruction (UUO) was induced. In human HK2 cells, knockdown of KLF14 led to more severe fibrosis induced by TGF-ß1, while overexpression of KLF14 partially attenuated this process. Specifically, KLF14 deficiency decreased mitochondrial FAO activity, resulting in lipid accumulation. Thus, the energy supply to the cells was insufficient, finally resulting in TIF. We further proved that KLF14 could target peroxisome proliferator activated receptor alpha (PPARα) as a transcriptional activator. This study identified the upregulation of KLF14 expression in response to kidney stress during the process of fibrosis. Upon TIF, the activated TGF-ß signaling pathway can enhance KLF14 expression, while the upregulation of KLF14 expression can decrease the degree of TIF by improving FAO activity in tubular epithelial cells and recovering the energy supply mediated by PPARα.


Assuntos
Nefropatias , Fatores de Transcrição Kruppel-Like , PPAR alfa , Obstrução Ureteral , Animais , Humanos , Camundongos , Ácidos Graxos/metabolismo , Fibrose , Rim/metabolismo , Nefropatias/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Metabolismo dos Lipídeos/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Fator de Crescimento Transformador beta1/genética , Regulação para Cima , Obstrução Ureteral/genética , Camundongos Knockout
15.
ChemSusChem ; 16(2): e202201721, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36456525

RESUMO

Durability is crucial for the long-term application of cathode oxygen reduction reaction (ORR) catalysts in fuel cells. In this work, sulfur was successfully doped into reduced graphene oxide (rGO) aerogels to achieve the formation of 1T/2H hybrid phase MoS2 , obtaining MoS2 @S-rGO-300 composite ORR catalyst support. After loading ultrafine Pt nanoparticles, Pt/MoS2 @S-rGO-300 showed not only an enhanced ORR activity, but also a significantly improved stability after 10000 cycles. The mass activity retention for Pt/MoS2 @S-rGO-300 after cycles reached 89.94 %, while that of Pt/rGO was only 37.44 %. Density functional theory calculations revealed that the enlarged binding energy between Pt atoms and MoS2 @S-rGO-300 led to the prevention of Pt agglomeration as well as Ostwald ripening.

16.
Clin Transl Radiat Oncol ; 38: 57-61, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36388248

RESUMO

Introduction: Pulmonary toxicity is dose-limiting in stereotactic body radiation therapy (SBRT) for tumors that abut the proximal bronchial tree (PBT), esophagus, or other mediastinal structures. In this work we explored published models of pulmonary toxicity following SBRT for such ultracentral tumors in an independent cohort of patients. Methods: The PubMed database was searched for pulmonary toxicity models. Identified models were tested in a cohort of patients with ultracentral lung tumors treated between 2008 and 2017 at one large center (N = 88). This cohort included 60 % primary and 40 % metastatic tumors treated to 45 Gy in 5 fractions (fx), 50 Gy in 5 fx, 60 Gy in 8 fx, or 60 Gy in 15 fx prescribed as 100 % dose to PTV. Results: Seven published NTCP models from two studies were identified. The NTCP models utilized PBT max point dose (Dmax), D0.2 cm3, V65, V100, and V130. Within the independent cohort, the ≥ grade 3 toxicity and grade 5 toxicity rates were 18 % and 7-10 %, respectively, and the Dmax models best described pulmonary toxicity. The Dmax to 0.1 cm3 model was better calibrated and had increased steepness compared to the Dmax model. A re-planning study minimizing PBT 0.1 cm3 to below 122 Gy in EQD23 (for a 10 % ≥grade 3 pulmonary toxicity) was demonstrated to be completely feasible in 4/6 patients, and dose to PBT 0.1 cm3 was considerably lowered in all six patients. Conclusions: Pulmonary toxicity models were identified from two studies and explored within an independent ultracentral lung tumor cohort. A modified Dmax to 0.1 cm3 PBT model displayed the best performance. This model could be utilized as a starting point for rationally constructed airways constraints in ultracentral patients treated with SBRT or hypofractionation.

17.
Environ Sci Pollut Res Int ; 30(11): 31631-31646, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36450965

RESUMO

Aldehydes as an environmental pollutant may lead to oxidative stress, which is an important mechanism in the development of osteoporosis. This suggests a possible link between aldehyde exposure and osteoporosis. Considering the mixed nature of aldehyde exposure and the interactions between different aldehydes, we explored for the first time the associations between mixed six aldehydes (benzaldehyde, butyraldehyde, heptanal, hexanal, isovaleraldehyde, and propionaldehyde) and BMD in three populations (men, premenopausal women, and postmenopausal women) by applying four statistical models: quantile g-computation (qgcomp) model, Bayesian kernel machine regression (BKMR) model, generalized linear regression model (GLM), and generalized additive model (GAM), based on the National Health and Nutrition Examination Survey (NHANES) 2013-2014. We found that mixed aldehydes could significantly reduce BMD in men, with hexanaldehyde and propanaldehyde having the greatest negative qgcomp model and BKMR model weights, also confirmed by GLM. The associations between isopentanaldehyde and propanaldehyde and femoral BMD in men were non-linear and had threshold effects as derived from the BKMR model and GAM. The associations turned positive when the concentrations of isopentanaldehyde and propanaldehyde exceeded their respective inflection points. To conclude, our study might provide new ideas for the prevention and treatment of osteoporosis, and hexanaldehyde and propanaldehyde should be more regulated to prevent osteoporosis.


Assuntos
Densidade Óssea , Osteoporose , Masculino , Humanos , Feminino , Inquéritos Nutricionais , Teorema de Bayes , Modelos Estatísticos , Aldeídos
18.
Chemosphere ; 311(Pt 2): 137065, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334755

RESUMO

Phenols and parabens widely exist in personal care and consumer products and have been proved to be endocrine disrupting chemicals that could disturb bone metabolism. The current studies focusing on the associations between phenols and parabens with bone mineral density (BMD) drew contradictory conclusions. Considering the bias might be due to not considering the effects of mixed exposure, we conducted the first cross-sectional study to investigate the associations of both single and mixed metabolites of phenols and parabens with BMD in three populations by setting up four models: generalized linear regression model (GLM), weighted quantile sum (WQS) regression model, quantile g-computation (qgcomp) model and Bayesian kernel machine regression (BKMR) model, based on the US National Health and Nutrition Examination Survey (NHANES) database. We found that the association between the mixtures and total femur BMD in men was significantly negative. Bisphenol A (BPA) was shown to play the most important role in this negative association in the BKMR model, and this negative association was also confirmed in the GLM model with ß coefficient (95% CI) being -0.02 (-0.04, -0.01). The relationships between the mixtures and femoral neck and trochanter BMD in postmenopausal women were significantly positive. Benzophenone-3 (BP-3) played the most significant role in the positive association with trochanter BMD, as confirmed by the WQS, qgcomp and BKMR models, and this positive association was also verified by the GLM model with ß coefficient (95% CI) being 0.01 (0.00, 0.02). In conclusion, the association between the mixed phenols and parabens and BMD was negative in men while was positive in postmenopausal women, which was gender-specific. This study might provide new ideas for the prevention and treatment of osteoporosis and the control of personal care and consumer products containing phenols and parabens in the future.

19.
Front Chem ; 10: 1058256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505747

RESUMO

Ovarian cancer (OC) is a gynecological tumor with possibly the worst prognosis, its 5-year survival rate being only 47.4%. The first line of therapy prescribed is chemotherapy consisting of platinum and paclitaxel. The primary reason for treatment failure is drug resistance. FOXM1 protein has been found to be closely associated with drug resistance, and inhibition of FOXM1 expression sensitizes cisplatin-resistant ovarian cancer cells. Combining existing first-line chemotherapy drugs with FOXM1 prolongs the overall survival of patients, therefore, FOXM1 is considered a potential therapeutic target in ovarian cancer. Previous research conducted by our team revealed a highly credible conformation of FOXM1 which enables binding by small molecules. Based on this conformation, the current study conducted virtual screening to determine a new structural skeleton for FOXM1 inhibitors which would enhance their medicinal properties. DZY-4 showed the highest affinity towards FOXM1, and its inhibitory effect on proliferation and migration of ovarian cancer at the cellular level was better than or equal to that of cisplatin, while its efficacy was equivalent to that of cisplatin in a nude mouse model. In this study, the anti-tumor effect of DZY-4 is reported for the first time. DZY-4 shows potential as a drug that can be used for ovarian cancer treatment, as well as a drug lead for future research.

20.
Front Physiol ; 13: 917510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091380

RESUMO

Human adipose-derived stem cells (hASCs) have multi-directional differentiation potential including osteogenic differentiation. Mechanical stimulation is thought to be a key regulator of bone remodeling and has been proved to promote osteogenic differentiation of mesenchymal stem cells. However, the mechanism how mechanical tension-induced osteogenesis of hASCs still remains poor understood. Polycystin-2 (PC2), a member of the transient receptor potential polycystic (TRPP) family, is involved in cilia-mediated mechanical transduction. To understand the role of PC2 in osteogenic differentiation under mechanical stimuli in hASCs, PKD2 gene was stably silenced by using lentivirus-mediated shRNA technology. The results showed that mechanical tension sufficiently enhanced osteogenic differentiation but hardly affected proliferation of hASCs. Silencing PKD2 gene caused hASCs to lose the ability of sensing mechanical stimuli and subsequently promoting osteogenesis. PC2 knock-out also reduced the cilia population frequency and cilia length in hASCs. TAZ (transcriptional coactivator with PDZ-binding motif, also known as Wwtr1) could mediate the genes regulation and biological functions of mechanotransduction signal pathway. Here, mechanical tension also enhanced TAZ nuclear translocation of hASCs. PC2 knock-out blocked tension-induced upregulation of nuclear TAZ and suppress tension-induced osteogenesis. TAZ could directly interact with Runx2, and inhibiting TAZ could suppress tension-induced upregulation of Runx2 expression. In summary, our findings demonstrated that PC2 mediate mechanical tension-induced osteogenic differentiation of hASCs by activating TAZ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...